

Let $d=$ depth of tree (here, 3); $b=$ branching factor (here, also 3)
Assume optimally ordered leaves for both max and min players (i.e., leftmost alternative is always the best move for each player at every node)
Then:
The \# of static evaluations $s=b^{(d+1) / 2}+b^{(d-1) / 2}-1$ for d odd; $s=2 b^{d / 2}-1$ for d even.
In this case, we have: $3^{2}+3^{1}-1=11$
Thus in the best case, with $\alpha-\beta$ we reduce the number of static evaluations by the square root of what it was - effectively $1 / 2$ the original branching factor.

