L

On the Development of Reactive Systems*

D. Harel and A. Pnueli

~ Department of Applied Mathematics
The Weizmann Institute of Science
Rehovot 76100, Israel

January, 1985

Abstract N

Some observations are made concerning the process of developing
complex systems. A broad class of systems, termed reactive, is singled
out as being particularly problematic when it comes to finding satisfac-
tory methods for behavioral description. In this paper we recommend the
recently proposed statechart method for this purpose. Moreover, it is ob-
served that most reactive systems cannot be developed in a linear stepwise
fashion, but, rather, give rise to a two-dimensional development process,
featuring behavioral aspects in the one dimension and implementational
ones in the other. Concurrency may occur in both dimensions, as orthogo-
nality of states in the one and as parallelism of subsystems in the other. A
preliminary approach to working one’s way through this “magic square”
of system development is then presented. The ideas described herein seem
to be relevant to a wide variety of application areas.

Why Another Paper on System Development?

The literature on software engineering, programming languages, and
system and hardware design, is brimming with papers describing methods
for specifying and designing large and complex systems. Why then are we

* This research was suppo;ted in part by grants from AD CAD Inc. and the
Israel Aircraft Industries.

NATO ASI Series, Vol. FI3

Logics and Models of Concurrent Systems
Edited by K.R. Apt

@ Springer-Verlag Berlin Heidelberg 1985

478

writing yet another one?

In many kinds of computation-oriented or data-processing systems,
sometimes characterized as sequential or functional systems, there is, for
the most part, consensus as to the basic philosophy for design. For
more complex systems, involving many concurrently executing compo-
nents, which at times integrate software and hardware, there is much less
of an agreement. As we argue below, this is due to an essential difference
between two kinds of systems that makes the process of developing the
more complicated of the two inherently more difficult. Indeed, we would
like to think of the present paper as primarily containing an attempt to
clarify some of the underlying notions which seem to us to be fundamen-
tal. In passing, we shall attempt to address such issues as the kinds of
systems that require new ideas, and the gaps such ideas ought to fill.

Which Systems are Problematic?

We would like to state from the start that by “systems” we do not wish
to restrict ourselves to ones which are software-based, hardware-based
_or so-called computer-embedded. The terminology we shall be using is
general enough for these and others, and so we shall not be specific about
the final form the implementation of the system takes.

In many circles it is common to try to identify the features charac-
terizing "difficult” systems; that is, the ones for which special methods
and approaches are needed. Resulting from these efforts are various di-
chotomies distinguishing the easily-dealt-with systems from the problem-
atic ones. Some people (e.g. in the programming language semantics com-
munity) have put forward the deterministic/nondeterministic dichotomy:
systems for which the next action is uniquely defined can be easily defined,
while nondeterminism requires special treatment. Others (such as certain
verification researchers) have suggested that the problems lie in perpetual
systems, whereas terminating ones are easy. Additional dich¢ .omies that
have been suggested are the synchronous/asynchronous, “lazy” [real-time,
and ofi-line/on-line ones, and what is perhaps the most popular one: the
sequential /concurrent dichotomy. Indeed, concurrency gives rise to prob-
lems that are quite different from the ones sequential systems present, and
there are entire szhools of thought devoted to solving the problems raised
by the presence of concurrently operating elements.

479

T e, ey .-

\ WA
L~

M [~ E-{o,.o,,...}

AR

Fig. 1: A transformational Fig. 2. A reactive system as 3 “black cactus”
gystem as 8 black box

— M |
p——

o
-
_A

As it turns out, all the dichotomies mentioned are real and the prob-
lems the more difficult members of each pair present are indeed crucial. We
wigh, however, to point to another dichotomy, one which we think is the
most fundamental of all and the one that seems to us to best distinguish
systems that are relatively easy to develop from those that are not. We feel
that once the problematic part of this pair is satisfactorily solved, most of
the others will yield less painfully too. Our proposed distinction is between
what we call transformational and reactive systems. A transformational
gystem accepts inputs, performs transformations on them and produces
outputs; see Fig. 1. Actually, we include in the definition of a transfor-
mational system also ones which may ask for additional inputs and/or
produce some of their outputs as they go along. The point, however, is
that, globally speaking, these systems perform input/output operations,
perhaps prompting a user from time to time to provide extra information.
Reactive systems, on the other hand, are repeatedly prompted by the out-
gide world and their role is to continuously respond to external inputs;
see Fig. 2. A reactive system, in general, does not compute or perform a
function, but is supposed to maintain a certain ongoing relationship, so to
gpeak, with its environment.

At this point, the reader should observe that reactive systems
are everywhere. From microwave ovens and digital watches, through
man/machine based software systems, silicon chips, robots and commu-
pication networks, all the way to computer operating systems, complex
industrial plants, avionics systems and the like. Common to all of these
is the notion of the system responding or reacting to external stimuli,
whether normal user-generated or environment-generated ones (such as
a lever pulled or the temperature rising), or abnormal ones (such as 2
power failure). Such systems do not lend themselves naturally to descrip-
tion in terms of functions and transformations. Of course, mathematically
gpeaking, it is always possible to take time itself as an additional input
(and output) and turn any reactive system into a transformational one;
needless to say, this idea is unrealistic and we shall not adopt it here.

480

The transformational/reactive dichotomy cuts across all the afore-
mentioned ones: both types of systems can be deterministic or not, termi-
nating or not, on-line or not, and contain concurrently executing compo-
nents or not. Also, reactive systems can be required to respond in real-time
or not, and the cooperation of their components can be required to be syn-
chronous or not. What then is so important about the distinction we are
making, and why are we claiming that it is the reactive nature of systems
that is problematic?

What is the Problem?

The answer to these questions seems to us to be rooted in the notion
of the behavior of a system. While the design of the system and then
its construction are no doubt of paramount importance (they are in fact
the only things that ultimately count) they cannot be carried out without
a clear understanding of the system’s intended behavior. This assertion
is not one which can easily be contested, and anyone who has ever had
anything to do with a complex system has felt its seriousness. A natural,
comprehensive, and understandable description of the behavioral aspects
of a system is a must in all stages of the system’s development cycle, and,
for that matter, after it is completed too.

Taking a very broad and abstract view, we may describe a typical
top-down development process as a sequence of transformations:

M, 8@ o (MD), sy ... M), sy

The structure studied at each level is a pair (M), S()) comprising a
specified system at the ©’th level of detail; M) is the i’th level physical,
or implementational, description, and S(7) is the behavioral specification.
At the top level M(oj might be highly underspecified, with S(0) using such
vague terms as “a data-base system responding to conjunctive queries”,
“3 plane for interception”, etc. Each level, even the 0'th one, needs some
description of the interface of the system with its environment. This can
be done by including a list E(?) in each of the I\'I(‘), containing descriptions
of those input and output channels, signals, requests and responses, that
constitute the system’s interaction with the “outside world”. The level of
detail in the interface lists can also vary with 1, from highly abstract items
such as “request communication” or “display target”, all the way down to
concrete lists of buttons, levers, displays and alarms. The corresponding
behavioral specification S(%) should characterize the desired behavior of
the system, in as complete a manner as possible, using the elements of

EW.

Any development step progressing from .]evel { to leyel { + 1 must
include a verification of the consistency of s(+1) with S(). This is true

481

regardless of whether it was the refinement of M () or of SU) that pre-
scribed the progress made. At times one can provide a rigid set of possible
refinement rules for producing §G+1) from S (). In these cases the rules
are internally, or locally, consistent, so that a development process that
uses them is automatically guaranteed to be globally consistent. A good
example of this i8 in pure software systems where one may use various es-
tablished program transformations which also prescribe the corresponding
transformations on the specification.

To be slightly more specific, one can think of a reactive system M
as a2 “black cactus” of sorts (in contrast with a black box). The “thorns”
of this cactus are simply the interface elements comprising the set E; see
Fig. 2. A behavioral description S of the system should give rise to a
set consisting of the legal sequences of these external input and output
events and conditions. Thus, describing the behavior should boil down to
defining a subset of the set of finite and infinite words over E. Of course,
if timing is important, this simplistic definition has to be extended, for
example by attaching a time stamp to each element in the sequence, or
by specifying the timing constraints separately, but for now specifying the
sequences will suffice. This relationship between M, E and S, holds for
the level-dependent versions M), E() and s() too.

Now, there have been numerous suggestions for methods, languages
and formalisms to be used in the development of complex systems. Many
of these are extremely belpful, and in general adopt 2 stepwise approach
such as the one just outlined. They are, for the most part, well-structured
and modular, and recommend a gradual step by step development in a top-
down, bottom-up or mixed fashion; many of them are visual in nature,
or at least have a visual counterpart and are thus easy to grasp; 2 pumber
of them are based on firm and precise mathematical models which admit
certain kinds of formal reasoning.

However, as it turns out, the methods existing for stepwise, well-
structured and coherent development of systems are predominan’cly trans-
formational in nature. In transformational systems it is possible, actually
highly desirable, to decompose the system in a way reflecting the natural
agtructure of the problem”, as it is sometimes referred to. In other words,
a high-level description of the problem, in the form of the transformation,
or function, that the gystem 18 supposed to carry out, is decomposed in
these methods into gseveral smaller problems of the same species, in the
form of lower level transformations, with the appropriate identifications

482

made among incoming and outgoing items. Each lower level transforma-
tion is then considered in its own right, and further decomposed. This
is but another way of saying that each s(i+1) consists of a set of trans-
formations, each of which was obtained from a transformation in s(#) by
transformational, or functional, decomposition. The system description
M{E+1) is then taken to match the transformations described in S(i+1) g5
cluoely as possible.

This is admittedly a very crude and sketchy account of such methods,
but the point we wish to make is that the procedure it illustrates works
nicely for transformational systems because transformations decompose
naturally into other transformations, and implementations of transfor-
mations decompose into implementations of other transformations. It is
therefore a small thing for one to observe that the two decompositions can
(and then even recommend that they should) be essentially the same, or
at least that they be related via a simple mapping. This is particularly -
attractive due to the fact that transformational decomposition provides
not only static informatioa but also the dynamics necessary for a good be-
havioral description. For example, a conventional structure diagram or a
function tree, two of the kinds of descriptions recurring in the literature,
can be given clear operational meanings when considered for transfor-
mational systems: inputs (data and/or control) flow into boxes, modules
or functions, which proceed to perform their designated transformations,
yielding outputs which in turn flow into others, etc. This is a wholly sat-
isfactory behavioral description of a transformational system.

It is for these reasons that in most software engineering views of the.
life cycle of a system the specification stage is more or less followed by
the design one: decompose the problem (=specify), and then use its parts
and their interconnections as the basis for planning the implementation
(==design). This idea is also one of the implicit mottos of structured pro-
gramming: let the structure of the program reflect the structure of the
problem, or, 2s one might say, let chunks of implementation {e.g. proce-
dures, blocks, tasks, etc.) be made to correspond to chunks of behavior.

Our main argument here is that this cheerful situation does not apply
to reactive systems at all. In a reactive system, even a pure software
one, it is not clear if or how complex behavior can at all be decomposed
beneficially into chunks, let alone for that decomposition to become the
basis for system design. This observation notwithstanding, it is ironical
that a breakup of the behavior is precisely what will eventually have to

483

be found, whether one likes it or not: the final system will, if completed,
consist of various increasingly more complex actual components (software,
hardware or mixed), each of which will, by its very existence, have to
have some kind of associated behavior. Moreover, these components will
most probably be reactive themselves. And so, developing the system will
ultimately have to involve some kind of physical decomposition, which, one
way or another, will have to be matched by 2 behavioral decomposition
too.

Let us for now, however, postpone the problem of connecting behav-
joral descriptions of reactive systems with their implementational ones.
Our first concern is with specifying the reactive behavior itself. How does
reactive behavior decompose? What can be done to encourage stepwise
refinement of the behavioral aspects of a system? How can one cope with
the intricacy that the behavior of a complex reactive system presents??

Before attempting to answer these questions, let us state the following
requisites, which we feel ought to be required from any satisfactory method
for behavioral description:

(1) It should provide descriptions that are well-structured, concise,
unambiguous, readable, and easy to understand.

(i) It should be solely descriptive, eliminating, or at least minimizing,
dependence on any implementational issues.

Requirement (i) implies that the method must have a simple but
rigourous semantics, and (ii) implies that the structuring of a behavioral
description should reflect the natural decomposition of the problem rather
than that of the implementation.

A Method for Behavioral Description

The statecharts method was introduced recen’cly[l] as a visual formal-
ism for specifying the behavior of complex reactive systems. The process of
preparing statecharts for a system is called the system’s statification, and

[1] gee D. Harel, “Statecharts: A Visual Approach to Complex Systems”, CS84-
05, The Weizmann Institute of Science, February 1984 (revised December
1984). :

484

it consists of describing the system’s behavior in terms of states, events
and conditions, with combinations of the latter two causing transitions be-
tween the former. Both states and transitions can be associated in various
ways with output events, called activities, which can be triggered either by
executing a transition or by entering, exiting, or simply being in a state.
The system’s inputs are thus the (external) events and its outputs are the
(external) activities; their union comprises the interface set E:

This, as the reader can no doul see, is a standard and well-known
idea, and is actually a simple combination of the Moore and Mealy defini-
tions of finite state automata. The allowed sequences over E correspond to
the language accepted by the automaton. Moreover, such automata come
complete with a standard visual renderation, the transition diagram. This
classical state transition method, however, has been all but abandoned as
a way of specifying the behavior of complex systems since it provides no
modularity or hierarchical structure, and suffers acutely from the expo-
nential blowup in the number of states that need be considered, and hence
also in the number of transitions. Indeed, a state/event description seems
to have to consider all possible combinations of states in all the compo-
nents of the system; hence the exponential growth.

The statechart method is rooted in an attempt to revive this old and
natural way of thinking about a system’s behavior, by extending it in sev-
eral fundamental ways aimed at overcoming the aforementioned difficul-
ties. The extensions apply to the underlying nongraphical formalism too,
but personal preference towards visual descriptions has led us to present
the ideas in terms of the graphical version. Some of the extensions are
now briefly described, but the reader is strongly advised to consult the
original paper for the others, as well as for a detailed example and further
discussions.

States in a statechart can be repeatedly combined into higher-level
states (or, alternatively, high-level states can be refined into lower-level
ones) using AND and OR modes of clustering. Fig. 3 shows a state B
whose meaning is “to be in B the system must be in precisely one of D,
E or F,” and Fig. 4 shows a state ‘A whose meaning is “to be in A the
gystem must be both in B and in C.” Notice, however, that in Fig. 4,B
and C are themselves OR states, thus the actual possibilities are the state
configurations (D, G), (D, H), (E,Q), (E,H), (F,G), and (F,H). We say
that D, E and F are exzclusive and B and C are orthogonal.

Transitions in a statechart are not level-restricted and can lead from

485

&)
= 1 0 ‘:c \
A a a]
[}
a8 '
L . \ D i E:l
Fig. 3: OR-ing states Fig. 4: AND-ing states

Fig. 5: An output-free statechart

s state on any level of clustering to any other. A sigpificant decision
here is to take a transition whose source state is a “superstate” to mean
“the system leaves this state no matter which is the present configuration
within it.” In this way, while event a in Fig. 5 causes 2 simple transition
from state K to L, the event b exemplifies a concise way of causing the
system to leave L or M, ie. any possibility of being in J, and to enter
K . Likewise, ¢ causes the system to exit any one of the A-configurations
listed above and enter M. If the target of a transition is a superstate,
as in the case of events d or e in this example, 2 default arrow must be
present indicating which of the lower-level states is actually to be entered

(L or the combination (E,G) in this example). '

Actually, transitions are in general from configurations to configu-
rations, owing to the possibility of orthogonal components in the source
and target states. Thus, in Fig. 5 if event f takes place in configuration
(F, H) the system enters P and if the same happens in P the system en-
ters (D, H). Concurrency and independence are both made possible by

486

orthogonality: on the one hand event m causes simultaneous transitions
in B and C if the configuration is (E, G), and on the other p causes E to
be replaced by D regardless of, and with no change to, the present state
in C. It is noteworthy that orthogonality (and hence the possibilities it
raises) is allowed and encouraged on any level of detail, as the statifier sees
fit. Accordingly, a configuration can be layered too, containing orthogonal
state components on many levels.

Outputs can be associated with transitions as in Mealy automata by
writing a/b along an arrow; the transition will be triggered by a and will in
turn cause b to occur. Similarly, b can be associated with (entering, exiting,
or simply being in) a state, in line with Moore automata. In either case b
can be an external event or an internal one, in the latter case triggering
perhaps other transitions elsewhere in some orthogonal state.

The statification method is purely behavioral and requires of its user
to think in terms of the system’s conceptual states and their interconnec-
tions. It caters for modular “chunking” of behavior in several ways, most
notably by using exclusivity and orthogonality of states, and provides the
mechanisms needed for manipulating these modules as separate entities.
Statecharts are strongly oriented towards “deep” structured descriptions
that are organized into many levels of detail, and permit “zooming” easily
in and out of these levels. One can construct them in a disciplined hierar-
chical way, statifying a system level by level, or use interlevel transitions
and vary the depth as deemed appropriate. Statification can proceed by
top-down refinement, bottom-up clust .ing, or a mixture of both. Note
that the exponential blowup in stat.s does not arise here at all, as the .
option of using orthogonality on any level eliminates the need for explicit
consideration of all state combinations.

As a truely simple example of the way statechart levels refine reactive
behavior, consider the system whose interface set E is as in Fig. 6. Its
behavioral specification is given on two succesive levels in Figs. 7 and 8.
The allowed sequences in Fig. 7 can be described by the regular expression

Bi-(¢-Bj-a-B})*UB} (¢-Bj-a-Bj) - (Bf Us B)

where By = (bUcUd) and By = (bUcUe). The version in Fig. 8, on
the other hand, refines the allowed behavior to the sequences given by the
same expression, but with By = (bU bed), and By = (bu bcee).

This, then, is the formalism we wish to recommend for specifying
reactive behavior. It is important to observe that the description can be
made to reflect the statifier’s personal and natural view of the system’s

487

\0

‘d/

system

L4

b

Fig. 8: A reactive system with its interface set

: ‘_/"\
e .
B B2
within :bcd within:bce

Fig. 7: A statechart

(A

_ _J

Fig. 8: A refined statechart

behavior, free, if so desired, from implementational details. If lifting a
receiver conceptually causes 3 communication system to enter conversa-
tion mode, and this mode entails certain actions, one can say just that,

disregarding such questions
the lifting of the receiver an

as which component is responsible for sensing
d how the sensed fact is communicated to the

others. Of course, the crucial problem here is bringing this conceptual

description

down to earth; meaning, how does one combine it with the

natural implementational process of breaking the system down into its
physical parts and their interconnections.

The Magic Square of System Development

Now that we know how to decompose reactive behavior, we can at-
tempt to apply the “problem structure matches system structure” princi-

ple. Indeed,
do just that; refine t
as illustrated above, and t

if there are no limitations on the implementation at all one can
he behavioral specification by adding statechart levels
hen perform the implemenatational refinement

to match. While this might sound overly naive, in a pure software sys-
tem with a sufficiently high-level programming language, the statecharts
can be directly encoded into software, with multi-level orthogonality being

488

translated into nested concurrency. This applies to other possible meth-
ods for reactive behavior specification, such as Petri nets or languages like

CCS.

It is clear, however, that the vast majority of interesting reactive sys-
tems feature various preconceived, unavoidable limitations on the struc-
ture, distribution, capabilities and interconnections of their implemena-
tional components. Examples include geographical distribution of portions
of an airline reservation system, standard components of an avionics sys-
tem, physical limits on hardware components and their interaction, etc.
Even concurrent programs are, in general, not all that pure, as one typ-
ically is constrained by a limit on the maximal number of concurrently
executing processors. In this way, if the implemenational restricions are
to be honored, being overly liberal in the use of orthogonality, for example,
can easily cause severe problems in a.naive attempt to model the imple-
menational refinement according to the behavioral one.

What this means is obvious: our recommendation for a method that
enables natural behavioral decomposition notwithstanding, the impleman-
tational description has a nasty habit of prescribing, at least in part, its
own decomposition, which need not, in general, match our conceived be-
havioral one.

These observations prepare the ground for a very simple idea: by and
large, the development of a reactive system is not a one-dimensional pro-
cess in which specification and design are two temporally related stages,
but rather it is a two dimensional “magic square” in which they play the
role of the dimensions themselves. One might label the two dimensions
simply “specification” and “design”, but we prefer to use those terms as
verbs, and so we label the dimensions “behavior” and “implementation”.
One thus specifies the system’s behavior but one designs its implementa-
tion. See Fig. 9.

stert behavior
"'y (specify)

imple-|, .
mentation| {3¥3/en!

Fig. 9: The magic square

489

Along both dimensions making progress amounts to supplying more
detail, but the two axes involve fundamentally different kinds of detail.
Proceeding vertically (downwards), one is bringing the system closer to
its final form by supplying more information about its implementation,
and proceeding horizontally (rightwards), one is fine-tuning the system’s
performance by providing more information about its behavior. In either
case, and this explains in part our use of the term “magic square”, every
line or column amounts to a full, stratified, description of the system along
one axis, but at a fixed level of detail along the other.

Ideslly, the development process starts at the upper leftmost point,
with nothing known about the system’s intended behavior or its desired
implementation, and ends at the lower rightmost point, with everything
known about both. The more subtle side of the term “magic square” is
rooted in the many possible ways of traversing the square from its initial
point to its final one; following any of these correctly should result in the
system being fully specified and fully designed.

It seems almost an ac. dent that for the easier systems in our di-
chotomy, i.e. transformational ones, or reactive ones with no implemen-
tational constraints, this process can actually be linearized by, in essence,
mapping one dimension onto the other relatively easily as discussed ear-
lier. In our opinion this accident is the heart of many misconceptions and
difficulties encountered in the development of complex systems, and to
some extent also in pure concurrent programiming.

We are aware of the fact that even with concrete formalisms in mind
any discussion of such a general model for system development is bound to
seem naively idealistic when considered for real-world applications. Nev-
ertheless, we are determined to describe our model in the simplest possible
terms, and for that purpose, besides adopting simple statecharts, free of
global constraints, for the behavioral axis, we adopt a very simple decom-
position method for the vertical, implementational axis.

At level 0 of the vertical axis the system resides as an unspecified
entity M(O), together with its interface set E(), Progressing down the
vertical axis is characterized by a step of implementational decomposi-
tion. For a typical descent from level 4 to level 4 + 1, a subsytem M on
level ¢, with interface set E, might be decomposed into its constituent
components My,..., M,,, with their interface sets Ey, ..., En; see Fig. 10.
For this decomposition to be acceptable certain obvious properties must
be satisfied. For exampie, each element of E, the interface set of M, must
appear in at least one set E;, or at least be refined into more concrete
elements, each of which appears in at least one Ej.

480

E /1 1/ 7
level i - M —
]

7/ T\
Ei | s Ezy Env A /v
levelist YNM I I Me | --- Ma |
-~ e N ™~ N
71\ /7 \ /7 \

Fig. 10: Implementational decomposition

In addition to interface elements that are external to the whole system,
the interface set E; of M; may contain additional elements which are
external to M; but internal to M. These ¢lements provide the components
with the ability to communicate, synchronize, and influence one another.
Thus, each element in E; — E must be tagged with some indication as to
its source or target subsystem(s) from among the others. We shall not go
into more detail here so as not to detract attention from the underlying
issues. Besides, our presentation of this decomposition method is highly
simplified anyway, and many standard methods can be readily adopted
for a satisfactory treatment of the implementational axis.

In contrast to making progress down the vertical axis by refining the
implementational design of the system, progressing along the horizontal
axis refines and structures its behavior, and as discussed above can be
thought of as adding levels to the appropriate statecharts. Having reached
some fixed vertical level 1, one has essentially decided upon a set of imple-
mentational modules, say My, ..., Mg, and now proceeding horizontally
at this vertical level amounts to statifying each of these. The outcome, of
course, is a set S1,...,5k of statecharts whose interface sets are simply

those of My,..., M.

As 3 side remark, note that the magic square is not a square at all.
First, there is no reason whatsoever for the levels of implementational de-
tail to be equal in number to those of behavioral detail, so that at the very
best the development model should be called a magic rectangle. Secondly,
and more significantly, the implementational decomposition, even using
the simple model above, forms a tree, and one whose branches are not
necessarily of equal length, so that the outcome is more like a tree with

421

— bohgvior —»

N
VAN
VAN I
' /0N
m /, ! \
L
Ld P | }
'
| ’ | 1
e ’ [(Y
m / 4' "I\\
.] £ | L1y
L] [; ’ (A [
L e —d
t / \ M
e / I } I\‘
/ v}
¢ ’ ,I \ Y
] r § P | LI
° y2dal 4) I |
n FALE N 4 T
77T <)
7 ¥
l P
7 T " 1
/ ! 3
L4 4 I
‘ —{
v P\
_7 [}
\
Il \
/
]
T
—)

Fig. 11: The magic square as 3 spiky tree

long spikes; see Fig. 11. Thirdly, and most significantly, for any given
node in the implementation tree (=system component) the behavioral de-
scription itself, even using simple statecharts on their own, is actually a
tree or worse, again with no uniform depth existing either amongst or
within each other. For a fixed system, therefore, the actual development
creature is far more complicated, rather like a multidimensional tangled
tree (and the reader must forgive us for not supplying a picture of one
here). Nevertheless, we stick to the term “square”, emphasizing its two
dominating dimensions.

An observation worth emphasizing is the presence, indeed highly de-
girable presence, of concurrency along both dimensions of the square. In
the implemenational axis concurrency appears as the obvious coexistence
of physical entities, usually termed the parallelism of system components,
and in the behavioral axis concurrency appears as the coexistence of modes
of behavior, which in statechart terminology is simply the orthogonality
of states. Both, either directly or indirectly, can cause simultaneity of
activities in the final system. In fact, orthogonality seems to us to be a
more natural manifestation of concurrency in the specification than certain
suggestions in the literature, such’ as specifying concurrency by Boolean

conjunction.

492

With the story we have told so far, two obvious ways of traversing the
magic square come immediately to mind: the L-shaped all-the-way-down
then all-the-way-to-the-right traversal, and its dual. The first corresponds
to a practice common in certain kinds of concurrent programs: obtain
information as to the number, type and interconnections of available pro-
cessors, and then specify the behavior of each, which is tantamount to
programming them. Whether the programming, which can itself proceed
in a stepwise disciplined manner, is regarded here as specification or de-
sign is irrelevant; the main point is that one is programming per processor.
Actually, one usually has some high level description of the intended be-
havior in mind even when one proceeds in this L-shaped way, but rather
than being used in a rigorous way in the development process it is more
often simply referred to at the end for the purpose of verifying the final
product against it.

The dual traversal calls for a complete behavioral specification prior
to any implementational decomposition, and was hinted at earlier. Neither
of these traversals of the magic square can be particularly recommended
for complex systems. Actually, neither of them makes essential use of the
available two-dimensionality at all, and as a consequence neither requires
that behavioral descriptions be projected in a nontrivial way from one
vertical level to the next. This kind of behavioral projection, however, is
one of the most crucial aspects of our magic square, as we now set out to
show. :

A Consistency Criterion for The Magic Square

In general, we wish to argue, a3 healthy development process prescribes
some horizontal progress prior to each significant progress made on the
vertical level. That is, at vertical level { system component M is given
a behavioral specification S of certain depth, that is, extending to some
horizontal point. One then decomposes M (or is provided with a decom-
position of M) into its subcomponents My, ..., M, and somehow specifies
the behavior of each, to the same horizontal depth, yielding the prelimi-
nary S,...,S5;. The S! are then refined as discussed above, yielding the
final behavioral descriptions Sy, ..., Sy of vertical level 1 + 1. Of course,
this set of behavioral descriptions of the M; has to be consistent with

493

behavior

30--—0—~>203e—v3-

(a) (b)

Fig. 12: Traversing the magic square

the behavioral description § of the higher-level system M, and we define
the nature of this consistency below. The general progress can thus be
schematically described as in Fig. 12, with the progress arrow aiming and
hitting the final point corres onding to the fully-specified, fully-designed
system. Each shaded area s(9) in Fig. 12 thus represents the collection of
behavioral descriptions of all subsystems relevant to level 1 of the imple-

mentation.

At the expense of sounding repetitious we remind the reader of Fig. 11
and its more realistic, hence far more complicated version of our simple
“square”, meaning that the S of each M on any level is given at the
depth of behavioral detail appropriate to it and its “peighbor” subsystems.

However, as mentioned earlier, for our purposes the issues can be discussed
under the pretensions implicit in Fig. 12.

Three questions come immediately to mind:
(1) What is, or should be, the precise consistency criterion relat-
ing SC) to sli+1)?

(2) Given a satisfactory answer to (1), can one recommend 2
recipe for obtaining g(i+1) from the decompositions carried out
when progressing downwards from level 1 to level ¢ + 1, together
with (91 |

(3) Whatever the answers to questions (1) and (2) are, can one
recommend a “good curve” for traversing the square?

494

Question (1) is purely technical, and without answering it satisfacto-
rily the whole magic square model collapses. There must be a firm and
precisely defined connection between the specified behavior of a portion of
the system and that of its constituent components, one which then tran-
scends to become a global connection between the initial and final stages
of the entire development process. ‘

The answer to question (1) can be stated informally as follows:

The external behavior implicit in S(?) must be equivalent to that
implicit in s!(i+1) , the preliminary behavioral description on level
{ + 1 which is of the same horizontal detail as s(#).

This simple answer contains some subtlety, since apart from the hazi-
ness of “external”, “implicit” and “equivalent”, S(i), in our chosen frame-
work of formalisms, is but a collection of statecharts, one for each com-
ponent on level ¢, and gii+1) jg a different collection, assoc ated with a
different level and different components. Nevertheless, the answer can be
made precise quite naturally, as .austrated in Fig. 13.

Take a typical level ¢+ component M and its subsystems My,..., Mn
on level ¢ + 1. In S() there will be a statechart S for M and in S{it1)
statecharts S,..., Sh for the M;. As discussed earlier, each pair (Mj, S;)

CONSISTENCY € € '
CRITERION © C-_;_j = S S,
t s

external behovioral
" equivalence

System Behgvioral
Components Descriptions
E E
LEVEL M s l
HW n question (2)
E, En
E En s . ‘ Sn]
eveL | [] [i~
E, Eq
ol

Fig. 13: The consistency criterion for the magic square

495

has an interface set Ej, only part of which is external to {M1,.--, Mp}
by corresponding directly to the interface set E of (M, S). For the sake
of simplicity let us assume that the elements in E have not been them-
selves refined in the transition to the Ej, but, as discussed above, each
E; consists of elements in E and possibly some new elements, internal to
the set {M1,---, M,}. Now form 2 new statechart S* by simply placing
S1,e-es S! side by side as orthogonal components. Their interconnections
via the internal interface sets E; — E will be taken care of by the state-
chart formalism itself. In this way, S* will be a single statechart whose
interface set consists of all interface elements which are not internal to the
set {M1,---> My}, that is, to the union over j of Ej — (E; — E), which is
simply E itself. We now require S and S*, compatible by virtue of their
common interface set E, to be actually equivalent, i.e., to define the same
set of sequences over E.

If ‘this equivalence holds when applied to esch and every implemen-
tational component on level 1, we say that s(f) and g(i+1) are equivalent,
and, more importantly, that SU) and gli+1) are consistent. The latter
term is justified by the former, together with the fact that S(i+1), the
final behavioral ‘description on implementational level £+ + 1, is obtained
from gHi+1) by adding levels of detail to the statecharts therein, thereby

refining the behaviors they define.

In the case where E is indeed refined in making the vertical transi-
tion, the notion of equivalence, and accordingly the notion of consistence,
has to be appropriately modified to account for the matching of interface
elements. Also, if the statecharts are accompanied by a set of additional
global constraints G, a possibility mentioned earlier, the refinement of
s(i+1) to g(i+1) must adhere to those, and hence might require 3 geparale,
specially tailored, consistency criterion, stating, roughly, that sii+n G
is equivalent to s() 4 G. Furthermore, one might be interested in the
possibility of refining, and hence making more concrete, the global con-
straints too in the process of making vertical progress. This progress will
then relativize to the interface sets of each level, just as the statecharts do,

resulting in a G for level ¢, and, again, the notions of equivalence and
consistency will have to change too. These, and pumerous other possible
complications might surface in specific attempts to use the magic square,
but they can be dealt with by extending the basic model in 2 natural way,

+nd with the underlying principles being the same.

The main consequence of the deﬁnition of local consistency between
- vertical levels is in its transitivity. By this we mean that consistency is

496

propagated down (or up) the vertical axis, resulting in the following fact:

If a complete development process is carried out in the magic
square model, using any desired traversal, while checking local
consistency, the final behavioral description of the system, s(/),
is consistent with the initial one, S(®). In other words, if one
constructs the entire system using the “atomic” implementational
components prescribed by the final vertical decomposition level
f and connects them as prescribed by the interface sets on that
level, and if one then convinces oneself that each of these low-level
components behaves as prescribed by its behavioral description
in S f), then the entire system is correct with respect to its initial

specification s(0),

This, by the way, should remind the reader of classical methods for
program verification, where global correctness follows from the correctness
of the consituent modules.

Precisely how one convinces oneself of the behavioral correctness of
the atc ‘nic components is of no concern here. It might follow from a man-
ufacturer’s documentation, a programmer’s verification, or be regulated
to mere belief. Just as in any typical verification process, the soundness of
one’s use of the magic square in this fashion is a doubly-relative concept; it
relies on an accepted initial specification, against which one verifies what
one has constructed (in this case this is the initial behavioral specification
S(O)), and it relies on an “axiomatic” acceptance of the fact that the atomic
elements, which constitute the building blocks with which one has carried
out that construction, are correctly specified (in this case this amounts to

accepting the final vertical level M), st/), as is).

At this point, one might be tempted to ask the following question: if
the S and S* appearing at a certain stage in the process (see Fig. 13) are
required to be two equivalent descriptions of the same part of the final sys-
tem, given in the same formalism, and over the same interface set £, why
then is S* not constructed directly? Why was S* not given as the level ¢
behavioral description of component M, especially since it is already con-
veniently decomposed in accordance with the decomposition My, ..., My,
of M? It goes without saying that this would eliminate any necessity for
checking the equivalence of behavioral descriptions. The answer, of course,
embodies the main issue here: S* is not necessarily a natural behavioral
description of M because it is composed according to My,..., M. A
good behavioral description of an airline reservation system which uses

497

ten geographically distributed computers and a thousand terminals might
be one which decomposes in ways that cut across this physical decompo-
sition, just as a good behavioral description of a VLSI chip need not be
given in terms which even mention its breakup into design-related blocks.
Whatever the case, the «ynnatural” S*, which consists of the preliminary
behavioral descriptions §},...,Sy, of the components My, ..., Mg, has to
be prepared somehow; but how? This is precisely question (2) above.

How to Traverse the Magic Square?

We are in no position to present detailed answers to questions (2) and
(3), and even less so to claim that we know of answers that can or should
be used universally. Quite to the contrary, different kinds of systems
present different kinds of problems in behavioral specification, and the
entire development process can be regarded as an art, with many facets
and many possibilities.

Moreover, more often than not, a complex development effort does not
start at the initial point of a totally blank magic square. It usually starts
with various portions of the square already filled in. That is, certain system
components, and even certain chunks of behavior, are already prescribed
to the developer in advance, and the development process must accomo-
date them as it proceeds. Therefore, as far as question (3) is concerned, we
can only say that, when viewed as a function that plots horizontal progress
against vertical progress, the development curve should be monotonically
increasing (see Fig. 12); it makes very little sense to provide a subcom-
ponent with less behavioral detail than its parent component. However,
other than that, and other than observing that the curve should probably
be nontrivial (i.e., not L-shaped or its dual), developers should be free to
define their own preferred curves for traversing the square.

As to question (2), there is one general point to be made here. Let
M be a component on vertical level 1, decomposed on level ¢ + 1 into
Mi,..., My, and let S be the behavioral specification of M. If £ and
Ei,...,En are the interface sets of the components (no refinement in the
E’s; as above), then one can proceed as follows: for each 1 < 7 < n, start
with S itself as a first approximation to S;, the behavioral specification of
M; on level 1 + 1.

488

Now, clearly S is not a legal statification of §; in general, since it
refers to elements from E — E;. However, this can be fixed as follows.
Output elements in E — E; are simply eliminated, and for each input ele-
ment e therein one finds a k with e € Eg, and modifies the two copies of
S, that of Ej and that of Ej, so that the former, whenever ¢ is sensed,
outputs a new item ¢’ to M;, in whose copy of S each e is replaced by €'
In this way M; can sense the input event ¢ even though it can be directly
sensed only by Mj. The resulting statecharts, call them S7,..., S are
now legel behavioral specifications of the Mj;, in the sense that their or-
thogonal product is equivalent to S. Moreover, the S}' are on the same

horizontal level of detail as S. These S;.' , therefore, conform to the def-

inition of the preliminary description of sHi+1) gee Fig. 12, and hence,
in principle, we have answered question (2). However, we clearly do not
recommend that one stop here; the result will be an exponentially grow-
ing behavioral specification, not to mention its complete detachment from
any naturalness involved in the implementation refinement of M into the
M;. Rather, one should work on the S¥, simplifying and changing them
to reflect the intended behavior of the M;. In this sense, the only useful
role S}’ can play, is that of a starting point leading to the desired S;, the

final behavioral specification of M;.

Actually, we feel that it is worthwhile to search for good transforma-
tions for weeding out portions of S;-' not really relevant to M;, using the
difference between E and E;, and S itself as directives. Such transforma-
tions, certain simple examples of which come immediately to mind, should
be required to preserve equivalence of the behavior, modulu the transition
from E to Ej;.

The equivalence problem for reactive behavioral specifications, and in
particular equivalence-preserving transformations of statecharts, seems to
be an important area for future research. Satisfactory and useful results
in this direction can help turn the magic square from 2 model of system
development, which is the way we have tried to portray it here, into a de-
tailed methodology, or prescription, a line we have not yet tried to pursue.

Acknowledgement

The contents of this paper owe much to many colleagues and authors.
In particular, we have been influenced by several ideas found in the work
of M. Alford, L. Lamport and D. Parnas.

